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I. INTRODUCTION

II. RELATED WORK
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A. Environment Initial Modeling

With an RGB-D camera mounted at the wrist, the robot
receives point clouds at each time step. Our pipeline takes
the raw point clouds as inputs, outputs a URDF to initially
represent the surrounding environment. To achieve this, we
first segment the raw point cloud into several parts, generate
meshes and physical properties of each part. Here each part
would correspond to a link in the URDF. Then we need to
estimate the joint relationship between parts to produce a
URDF file. (See Fig. 1)

Fig. 1: To accomplish initial modeling of the environment, there
are: (a) Part-level instance segmentation; (b) Mesh generation;
(c) Physical property estimation; (d) Joint relation estimation; (e)
URDF tree generation.

We use URDF models from SAPIEN dataset [1] and
render 100 random views for each URDF model to generate
a dataset. How to generate ground-truth data for each task
will be introduced in the following paragraph.

a) Part-level instance segmentation model: We develop
a part-level instance segmentation model similar to [2],
which proposes a network to segment a finite, but unknown
number of moving objects. We use the same computing
paradigm as [2] to achieve instance segmentation, but only
take static point cloud as input. For more details, we refer to
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Fig. 2: A figure of the segmentation process adopted from [2]. Left:
Points represent points in a point cloud. Stars represent ground-
truth object centers. Same color indicates same object. Middle:
Each square represents the features in feature space each associated
with a point on the left. The size of the squares represents the
corresponding point’s probability of being an object centroid. Right:
The segmentation process cycles through the squares starting with
those having the highest probability to be an object centroid. A
sphere centered at one of those squares with radius B̂ then segments
trajectories and corresponding points.

[2]. The model takes in the point clouds {Pit}Ni=1 ∈ RN×3,
and outputs a part-level instance segmentation mask denoted
as {Mi

t}Ni=1 where Mi
t ∈ {1, 2, ...,K}. K is the number

of parts. We then segment the raw point cloud {Pit}Ni=1 into
a set of groups denoted as {Gjt }Kj=1. A visualization of the
process is shown in Fig.2. We discuss the detailed processes.

Here we adopt the same notations used in [2]. Given
the received point cloud {Pit}Ni=1, we utilize PointNet++
[3] to regress the centroid {ζit}Ni=1 ∈ RN×3, boundary
{Bit}Ni=1 ∈ RN×1, and confidence score {Sit}Ni=1 ∈ RN×1
per point, similar to point segmentation. For each point Pit
with a mask M i

t = k indicating which part the point Pit
belongs to, centroid ζit denote the 3D centroid position of
the part k in the world coordinate. Bit is a radius estimate
of the sphere that encloses all points which belong to the
same part. Sit contains the probability that it is nearest to the
object centroid.

During training stage, we adapt a pixel-wise loss Lseg as
defined in [2], which measures the L2 distance between the
predicted ζ̂it, B̂it, and Ŝit and the corresponding ground
truth values ζit , Bit, and Sit . Ground truth ζit is directly
calculated respect to the ground-truth part segmentation.
Bit is half of the distance between the ζit and the nearest
neighbour part centroid. As for the ground truth Sit , we sort
the points by the distance to the part centroid, the top D



pixels per part will be labeled as 1, while others will be
labeled as zero.

While generating the segmenting masks, we adapt the
same method as [2]. We use the Figure in [2] to visualize
the inference process. Given predicted centroid {ζ̂it}Ni=1,
boundary {B̂it}Ni=1, and confidence score {Ŝit}Ni=1, we first
choose the point with highest confidence score Ŝkt , where
k ∈ {1, 2, ..., N}. Then all points falling inside the sphere
centered at ζ̂kt with the radius B̂kt are assigned to the same
part, which becomes the group Gjt . Then all points assigned
to this part are removed from the set of unsegmented points
before segmenting the next group. We keep iterating the
process until there are no points that have confident scores
higher than a threshold.

After the above process, we have initially segment the raw
point clouds into a finite but unknown number of different
groups.

b) Mesh Generation: Once finishing the part-level in-
stance segmentation, we need to generate a watertight mesh
for each point cloud group in {Gjt }. How to generate meshes
from point clouds has a rich literature. Here we adopt one
approach called ManifoldPlus [4] and find it works well in
our cases. There are other options, but it is not our main
focus. We first estimate the normals of raw point clouds
within each group Gjt . For each point in the group Gjt , we
create a small triangle centered at the point with the triangle
surface orthogonal to the point’s normal. We feed these
triangles into the ManifoldPlus [4] algorithm to generate a
watertight manifold surface in OBJ format. For more details
of Manifoldplus, please refer to [4].

c) Physical property estimation model: Based on the
raw input point clouds of each group, our model also
estimates the physical proprieties of each link. Once finishing
the part-level instance segmentation Gj , we can use max-
pooling to extract part-level feature from point-level feature
generated by PointNet++. Then we can estimate the physical
properties αsim of each link from the part-level feature. A
visualization of the network architecture is shown in Fig.1.
We apply L2 distance to supervise the physical properties
estimation, which is Lphy .

To annotate the mass value of objects in the training set,
we calculate the volume of the object’s link and multiply the
volume by the density of the material generating each link’s
mass value. Estimating the physical properties based on raw
point clouds is usually not accurate. These initial estimated
values would be modified in the interactive perception stages.

d) Joint estimation model: The mesh file and the cor-
responding physical properties constitute the descriptions of
the link element in the URDF. Next we discuss how to
estimate the joint element of the URDF.

We estimate the joint information between two parts from
the part-level feature as shown in Fig.1. The part-level
instance segmentation, physical property, and joint estimation
models share the PointNet++ weights to extract point-level
features.

First, given K links, we would develop a joint relationship

model that takes the segmented point clouds of the link u and
the link v as inputs, where u, v ∈ {1, 2, ...,K}, to estimate
their pairwise joint relationship denoted as J ∈ RK×K×4
and joint spatial description C ∈ RK×K×9. The joint
type J contains four classes, which are “None”, “Fixed”,
“Revolute”, “Prismatic”. Joint spatial description C have
nine dimensions, in which 6 for revolute joint (joint position
and orientation) and 3 for prismatic joint’s orientation. Note
that we already generate the mesh file of each link. We
collect each mesh’s 3D position in the world coordinate.
We then define their local coordinate and their relative
transformation. If there is a prismatic joint between two links,
we only need to estimate the prismatic movement direction.

For the joint limit element of the URDF, we set default
values and these values are online verified and modified in
the interactive perception stage.

Since there are always errors in part-level instance seg-
mentation results, we would need to online generate the
ground truth annotation of the joint description. Given two
point clouds sets Gut and Gvt in {Gjt }Kj=1 from part-level
instance segmentation network, we first find out the corre-
sponding links in the ground-truth URDF. We calculate the
IoU between the predicted instance segmentation masks and
the ground-truth part instance segmentation masks and select
the parts associated with the highest IoU scores. Then we can
obtain ground truth joint relationship J (u, v) and ground
truth joint spatial description C(u, v) between the relative
links in the ground-truth URDF file. We use the cross-entropy
loss to supervise the joint type classification LjointJ , and an
L2 distance to measure the predicted and ground truth joint
spatial description LjointC .

e) URDF generation: After estimating the relationship
between each pair in K links, we get a complete directed
K ×K graph. We need to find a directed tree to generate a
valid URDF file. URDF maintains a directed tree structure
to describe a single object, so there are several properties:
1) given K nodes, there is only one node that has no parent,
which is root node; 2) except the root node, each node has
one and only one parent, which means there are K − 1
links on the tree; 3) no cycles are allowed. Considering
these properties, we propose a method is similar to Kruskal
algorithm [5] to generate URDF. We treat the probability
of “None” between two links as the edge weight, then find
the next lowest-weight edge. The low probability of “None”
between two links indicates that there is a high probability
that there is joint between these two links. If adding this
edge to the tree will form no cycles and the child node of
this edge still have no parent, the edge will be accepted.
Once the edge is accepted, the associated pair of two links
will not be selected again. Given K node, once K−1 edges
are accepted, the algorithm terminate. Then we construct the
URDF structure by iterating the joint and the link from the
root node to the leaf node.

B. Interactive Perception

Although we have estimated a URDF file based on the
raw point clouds, there are always modeling errors during



the above-mentioned method. We propose a pipeline to train
the robot to use the Interactive Perception (IP) to verify
and modify the URDF. We first discuss what modeling
parameters are re-estimated through the IP and then introduce
the pipeline of how to update these modeling parameters.

a) Model Parameter: We would update the following
model parameters: (1) the joint type J ; (2) the joint spatial
descriptions C; (3) each link’s mask segmentationM and the
corresponding mesh file; (4) the physical attributes αsim. We
denote model parameter set as Z = {J , C,M, αsim}, and
E to describe the URDF tree structure.

After receiving the raw point cloud {Pit}Ni=1 at the time
step t, our system generates an action denoted as aIPt . To
learn the policy of generating the action aIP , we formulate
it as a reinforcement learning problem and discuss the policy
network at the end of this subsection. After the action aIPt
are executed, we can observe the difference between the real
world and the simulation world. Minimizing their difference
would encourage a more accurate modeling parameter Z . To
accomplish this, we first need to establish the correspondence
between the real world and the simulation.

Note that, we would optimize the link from the root node
on URDF tree to the leaf node if more than one joint state
has been changed. And the leaf node would only be updated
after its parent node is optimized.

b) Correspondence in Simulation: In the simulation,
given model parameters Z , E and action aIPt , we could
directly calculate the new point position of {Pit}Ni=1 at time
t+ 1, denote as {Pit+1}Ni=1, via the forward function FSim
in Eqn. 1.

Pit+1 = FSim(Pit ,Z, E , aIPt ) (1)

Given model parameter Z , E , and action aIPt , after the
action executed on a specific joint, the joint state would
change δq in the simulation through Eqn. 2, like open
the microwave by δq degree or open the drawer by δq
centimeters. Note that in the simulation, we could directly
record and measure these changes.

δq = Simulation.step(J , C,M, αsim, E , aIPt ) (2)

Based on these changes, we calculate the new positions of
these point clouds at the next time step denoted as Pit+1 via
Eqn. 3 4 5. For the revolute joint, with Rodrigues’ rotation
formula [6], we can obtain the transformation matrix T ∈
R4×4 from the joint spatial description C and the joint state
change δq. For the prismatic joint, the child link of the joint
moves along the joint orientation with δq, which is denoted
as T. We also have M which is the binary mask for link of
the relative joint which applied action.

Pit+1 = FSim(Pit ,J , C,M, αsim, E , aIPt ) (3)

= FSim′(Pit ,J , C,M, δq, E) (4)

[Pit+1 1]T =

{
Pit , Mi

t = 0

T[Pit 1]T Mi
t = 1

(5)

c) Correspondence in Real World: Through the RGB-
D camera, the robot in the real-world receives a new point
cloud at the next time step denoted as {Pit+1}Ni=1. We train a
scene flow [7] model that takes raw point clouds {Pit}Ni=1 and
{Pit+1}Ni=1 as inputs, and outputs the scene flow {U it}Ni=1.
Note that there is rich literature discussing about the scene
flow including the learning-based approaches [2, 7] and
non learning-based approaches [8, 9] with different input
modality. Calcuating the scene flow is not our focus in this
work. After receiving the scene flow {Pit+1}Ni=1, we then
calculate the predicted positions of the raw point clouds at
the next time step, denoted as {Pit + U it}Ni=1. Each point
Pit + U it searches for the nearest point in {Pit+1}Ni=1. In
practice, if the distance between a point Pit + U it and its
corresponding nearest point is larger than a given threshold,
we would not use the point Pit +U it . We denote these found
points in {Pit+1}Ni=1 as {P̃it+1}Ni=1. {P̃it+1}Ni=1 is point-wise
correspondence to {Pit+1}Ni=1. We denote the point-wise real
world forward function Freal as follows.

P̃it+1 = Freal(Pit ,U it , {Pit+1}Ni=1) (6)

We adapt the same network architecture and training
scheme as [7]. We generate the training data on synthetic
URDF models. Given ground truth joint relationship J , joint
spatial description C, part-level instance segmentation M,
URDF tree E and a random joint state change δq, ground
truth scene flow annotation can be generated via function
Fsim′ in Eqn. 4.

d) Model parameter optimization: Up to now, we can
compute point-wise estimation of Pit ’s position at the next
time step in both simulation and real world by Fsim and
Freal, which denotes as P̃it+1 and Pit+1 respectively. A
accurate model parameter leads to a small difference of them.
We denoted the distance between {P̃it+1}Ni=1 and {Pit+1}Ni=1

as the Lt+1 defined in Eqn. 7.

Lt+1(aIPt ,Z, E) =
1

N

N∑
i=1

‖P̃it+1 − P
i

t+1‖2 (7)

To simplify the optimization, we decouple the optimization
process to two stages. First, we optimize the joint type J ,
joint spatial description C, part segmentation M, and joint
state change δq. Second we optimize the physical properties
αsim.

We first optimize J , C,M and δq respect to Ltran defined
in Eqn. 8.

Ltrant+1 (J , C,M, δq, E) =
1

N

N∑
i=1

‖P̃it+1 − P
i

t+1‖2 (8)

Since we consider one joint at a time, only the J , C,
M and δq of the one relative joint and its child link in E
would be optimized during this interactive perception step.
Leveraging the differentiability through Eqn. 9, we could
have the optimized J ′, C′, M′, and δq′ respect to the
gradient of Fsim′ in Eqn. 4. J ′, C′, M′, and δq′ should



better fit the new point clouds in the real world after aIPt is
executed.

J ′ = J − λJ
∂Ltrant+1

∂J

C′ = C − λC
∂Ltrant+1

∂C

M′ =M− λM
∂Ltrant+1

∂M

δq′ = δq − λδq
∂Ltrant+1

∂δq

(9)

Now, we will introduce how to optimize the physical
properties αsim. Note that J ′, C′, M′, and δq′ results in
a smaller difference between simulation and the real world.
Given the optimized J ′, C′, M′ and the old αsim, we can
obtain δq′′ through the nimble simulation in Eqn. 10.

δq′′ = Simulation.step(J ′, C′,M′, αsimE , aIPt ) (10)

The optimized δq′ may be different from δq′′ due to the
imperfect αsim. We have Lphyt+1,

Lphyt+1 = ‖δq′′ − δq′‖2 (11)

Thanks to the differentiablity of nimble simulation, we can
also optimize αsim through the gradient of Lphyt+1 by,

αsim′ = αsim − λαsim

∂Lphyt+1

δq′′
δq′′

∂αsim
(12)

Till now, we have optimized the modeling parameter Z
to Z ′ = {J ′, C′,M′, αsim′} after one interactive perception
step. After that, we need to modify the URDF file.

After one interactive perception step and optimization,
if the function value Lt+1 is lower than a threshold after
optimization, Z ′ is accepted to modify URDF file. The joint
type and joint spatial description would be directly changed
by J ′ and C′. Also the optimized M′ of the link would be
accepted, but it may cause other link in URDF vanishes due
to the over segmentation of part-level instance segmentation
in initial modeling stage. Some areas are eliminated from
the initial segmentation, which are points belong to M (the
segmentation mask before the optimization) but not belong
to M′ (the segmentation mask after the optimization)

M∗ = (¬M′) ∩M (13)

ifM∗ is larger than a threshold, it would be separated into a
new link in URDF and be verified and modified in the future
interactive perception step.

e) Policy network: We develop a deep reinforcement
learning algorithm which tasks as inputs the raw point
cloud {Pit}Ni=1 and model parameter set Z , and outputs an
action denoted as aIPt . Here the aIPt contains a discrete
action which is the joint id on the generated URDF, and a
continuous action that determines the goal state change of the
corresponding joint value. One challenge is that the action
space in our setting is hybrid. We develop an algorithm to

Algorithm 1 Interactive perception policy network

Initialize replay memory D to capacity N.
Initialize action-value function Q(s, a|θQ) with random
weights θQ.
Initialize actor µ(s|θµ) with random weights θµ

Initialize target action-value function Q(s, a|θQ′
) with

random weights θQ
′
.

Initialize target actor µ(s|θµ′
) with random weights θµ

′

Initialize target network θQ
′

and θµ
′

with weights θQ
′ ←

θQ, θµ
′ ← θµ

while i ≤M do
Randomly select a URDF to get the initial state s1.
while t ≤ T do

Select angle δqt = µ(st|θµ) +Nt according to the
current policy and exploration noise.

With probability ε select a random joint aIPt
Otherwise select aIPt = arg max

n
Q(st, δqt;σ)

Execute action aIPt in the emulator and observe
reward rt and state st+1

Store transition (st, a
IP
t , rt, δqt, st+1) in D

Sample random mini-batch of transitions
(sj , a

IP
j , rj , δqj , sj+1) from D

Set yj = rj + γ arg max
n

Q(sj+1, δqj+1; θQ)

Perform a gradient descent step on (yj −
Q(sj , a

IP
j ; θQ)) with respect to the network parameters

θQ

Update the actor policy using the sample policy
gradient:

∂J

∂θµ
=

1

N

∑
i

∂Q(s, δq|θQ)|s=sj ,δq=µ(sj)
∂δq

∗

∂µ(s|θµ)|s=sj
∂θµ

Update target networks:
θQ

′ ← τθQ + (1− τ)θQ
′

θµ
′ ← τθµ + (1− τ)θµ

′

end while
end while

tackle the hybrid action space. Note that the action space also
contains the fixed joint type and random pushing motion to
encourage exploration. So it’s acceptable that the interactive
perception policy network outputs an action of changing a
fixed joint by certain degree. Our system would ask the robot
to push the corresponding child link by certain forces. How
to generate the associated robot manipulation actions will be
discussed in III-D.

Because the number of joints is discrete and the joint’s
angle/value is continuous, we combine the DQN [10] and
DDPG [11] algorithms. In the nimble simulation setting, a
rigid object without any articulation is set to have a virtual
joint with the world. Our pipeline is also suitable for the
rigid objects.

We denoted the modeling quality improvement in Eqn.14
as the reward of taking the action at given the state st to



train the network to learn how to make the decision at.

rt = Lt+1(aIPt ,Z, E)− Lt+1(aIPt ,Z ′, E ′) (14)

The observation s consists of four parts. It first contains
the point cloud of the whole object R3×1024. Besides the
xyz coordinate values, each point also has a two dimensional
mask vector. The discrete mask of (1, 0) represents that the
point belonging to the parent link. (0, 1) indicates that the
point belonging to the child link. The rest points have the
mask vector of (0, 0). The mask feature in total has a shape
of R2×1024. The third part of the observation is the category
(“Fixed”, “Revolute”, “Prismatic”) of the joint represented
by one-hot R3×1024, and the fourth part of the observation
is the parameters of the joint (xyz, rpy) R6×1024. When
there are N joints, the observation state of the URDF is
st ∈ RN×14×1024. For two different joints, the differences
between these R14×1024 are the mask vectors.

Fig. 3: Interactive perception policy network architecture.

The policy network structure is shown in Fig. 3. When
the number of the joint that need to be optimized in
URDF is N , the shape of the observation is (N, 14, 1024).
In actor network, we first use PointNet++ to extract the
global features in the 3D point cloud, and then use the
fully connected network to further extract the features and
determine the changing joint angle/value δqt = µ(st|θµ),
and the dimensionality of the action is (N, 1). In critic
network, given N state-action pairs, for each state, we use
PointNet++ to extract the global features in the 3D point
cloud, and for the corresponding action, we use the fully
connected network to extract the features. We concatenate
the two features together to calculate the Q-value. The shape
of the output Q-value is (N, 1), in which the joint that needs
to be optimized is selected through the largest Q-value.

C. Sim-Real Gap Reduction Through augmenting differential
simulation with neural networks

Even if the analytical model parameters have been de-
termined, rigid-body dynamics alone often does not exactly
predict the motion of mechanisms in the real world [12]. In
the interactive perception stage, our pipeline would optimize

the modeling parameters to reduce the differences between
simulation and the real world. However there are always dis-
crepancy left. To address this, we propose a simulation that
leverages differentiable physics models and neural networks
to allow the efficient reduction of the sim-real gap. We denote
ssimt and st as current state of simulation and real world
respectively.

We develop a neural network model denoted NeuralNet
as shown in Eqn. 16 to predict the residual change of the
next state based on the current state, the current action,
and the calculated next state from the Nimble simulation.
Note that the calculated next state value from the Nimble
simulation may vary after each parameter’s updating. The
neural network model would adjust the residual values based
on the calculated next state. In our implementation, the
neural network model is a two-layer fully-connected neural
network.

In the real world, our robot would take action at based
on the state st and gather the transition tuple (st, at, st+1).
Meanwhile in the simulation, our robot would also take the
same action at based on the state st and gather the transition
tuple (ssimt , at, s

sim
t+1). Here ssimt and st are the same. We

define a loss denoted as Laug to measure the difference
between ssimt+1 and st+1.

sNimblet+1 = Nimble.step(ssimt , at) (15)

δst+1 = NeuralNet.forward(ssimt , at, s
Nimble
t+1 ) (16)

ssimt+1 = sNimblet+1 + δst+1 (17)

Laug = ‖ssimt+1 − st+1‖ (18)

Although we have augmented the differentiable simulation
with neural networks, the augmented simulation remains
differentiable as shown below.

∂δst+1

∂ssimt
,
∂δst+1

∂at
= NeuralNet.backward (19)

∂ssimt+1

∂ssimt
=
∂sNimblet+1

∂ssimt
+
∂δst+1

∂ssimt
(20)

∂ssimt+1

∂at
=
∂sNimblet+1

∂at
+
∂δst+1

∂at
(21)

D. Model-Based Manipulation Learning

In this subsection, we discuss how our system produces
robotic manipulation actions to successfully accomplish a
given task denoted as T . For example, the robot may receive
a task request from Sec.III-B to open the microwave by θ
degree, which is the action aIP defined in Sec.III-B during
the interactive perception stage. We first train the robot to
accomplish the task T in the differential simulation. We
then record these robotic manipulation sequences from the
simulation denoted as {(ssimt , asimt )}T−1t=0 , and utilize these
manipulation sequences to guide the robotic execution in the
real-world. Note that the manipulation tasks discussed in this
work still require the experts to provide the corresponding
goal states. In this work, we did not consider how to
accomplish the long-horizon manipulation task and leave it
for future work.



a) Manipulation in the Simulation: Based on the mod-
eling of the environment, we propose two-levels procedures
to guide the robot in the simulation to reach the target goal
G(T ) which indicates the success of the task T .

Object-centric setting. The first level is to find a feasible
path to reach the goal G(T ) under the object-centric setting.
In this setting, the robot is not loaded into the simulation,
and we would directly control the objects. We denote the
state and the action in this object-centric setup to be xt
and ut. Here xt = [qt, q̇t] which contains the object current
joint value qt and the joint velocity q̇t. ut represents the
external forces exerted directly to control the objects. In our
setting, there is only one object and one robot arm in the
manipulation scene. If there are multiple objects/parts in the
scene and there are Nr robot arms (Nr ∈ {1, 2, ...}), we
would restrict that there are only at most Nr objects/parts
which can be actively controlled simultaneously.

We formulate the problem of finding a feasible path to
reach the goal as an optimal control problem with the
dynamic function denoted as Fsim and the cost function
lo shown as below. Here T is the maximal time step.

Lo(T ) =

T−1∑
t=0

lot (xt, ut; T ) (22)

s.t. xt+1 = Fsim(xt, ut) (23)
x0 = xinit (24)

Here we explain the loss function in Eqn 25 for the
articulation object manipulation tasks. The l0T−1 measures
the difference between the final state of these objects (xT−1)
and the goal state of these objects (G(T ). The distance metric
depends on the task T . In our application, we measure the
differences between the final 6D poses of these objects and
their corresponding goal 6D poses and adopt the angle-axis
representation. We add a penalty C when any collision is
detected.

We omit each component’s weight coefficient within the
following loss functions within this subsection to simply the
notation.

lot (xt, ut, T ) =

{
‖ut‖2 + C t < T − 1

‖xT−1 − G(T )‖2 + C t = T − 1
(25)

We could find a solution to the optimization problem lever-
aging the differentiable simulation. For more details about
the differentiation and how to solve the loss function, we
refer to [13] and their code repository documentation [14].
We record the corresponding procedure sequences denoted as
{x∗t , u∗t }T−1t=0 . The sequences reflect how these objects should
be transformed to reach the goal G(T ) successfully, which
are used to guide robot actions at the next level.

Robot-centric setting. After gathering the {x∗t , u∗t }T−1t=0

in the object-centric setting, we load the robot into the
simulation and start the robot-centric procedure, in which
we find the robotic action sequences to accomplish the task

T . Note that in the robot-centric setup, the state ssimt =
[xt; q

r
t , q̇

r
t ] is composed of two components: the objects’ state

denote as xt, which are the joint position qot and joint velocity
q̇ot ; the robot’s joint position qrt and joint velocity q̇rt . The
action asimt in the robot-centric setup is the robot control
forces denoted as τ . Note that asimt does not contain ut
used in the object-centric setup meaning that we does not
directly control objects in the robot-centric settting.

We use the {x∗t , u∗t }T−1t=0 in the object-centric setting to
guided the robotic manipulation process. For example, when
we want to open a microwave, the simulation would return
a sequence of actions. In this cases, these actions indicates
that we would need to exert a stable torques on the joint of
the microwave’s door so that it would open to the specific
degrees. After we know what types of forces are need to
exert onto these objects in order to accomplish a given
manipulation task, what is left for robots to figure out is
how to exert these forces on the objects through contact
manipulations. We would then infer the contact regions and
types.

Robotic manipulations, which involve making contact
with external objects, are divided into prehensile and non-
prehensile manipulations [15]. Prehensile manipulation indi-
cates that the contact forces from the robotic manipulators
alone can stabilize the object, regardless of external forces
such as gravity. Meanwhile, the could also exert forces on the
object to change the object’s status. Non-prehensile manip-
ulation contains pushing the door, flipping the light switch,
rolling the ball on the table, etc. Given the modeling and the
task, our robot would decide what type of manipulations to
take. Given the sampled points, we adopt UniGrasp [16] to
rank where the grasping regions. For cases, such as opening
a box without any handle. There are no regions to grasp
the box to perform prehensile manipulation operations. The
robot would switch to consider non-prehensile manipulation
such as pushing. Denote the required pushing direction to
be e1. The pushing action is only feasible if the robot could
find a contact point on the object’s surface with the contact
point’s surface inward-pointing normal vector denoted as e2.
The pushing action is acceptable if 1) the angle between e1
and e2 is smaller than a given degree; 2) there are feasible
inverse kinematic solutions for the robot to reach the contact
region. Similarly, we would sample these contact candidates
on the surface of the objects and rank their scores. Some
visualization results in the real objects are shown in our
project webpage https://sites.google.com/view/egci.

After gathering the grasping region candidates and the
pushing region candidates, we could infer the contact point
positions on the object and contact types according to the
state and action {asimt }T−1t=0 . We add contact constraints in
the objectives of Eqn. 26 denoted as Ψt at each time step.
If the contact type is grasping, the robot is optimized to
maintain grasping through the grasping point. We minimize
the distance between the robot’s two fingers’ positions. If
the contact type is pushing, the robot is optimized to keep
making contact through the pushing point, leveraging the
contact detection module from the simulation. The robot’s

https://sites.google.com/view/egci


initial configuration is directly inferred based on the contact
type and region and is calculated through inverse kinematics.
Although there are multiple candidates, we parallelize the
whole computation to speed up the process.

We formulate the problem of directly finding the sequence
of robotic actions {asimt }T−1t=0 to accomplish the task T as an
optimization problem. We adopt the Guided Policy Search
formulation [17]. The cost function is denoted as lr. The
policy parameterized by θ is πθ, which is a two-layer fully-
connected neural network. To train the policy network, we
adopt the mirror descent guided policy search (MDGPS)
algorithm [18] to minimize the differences between the
policy network’s output and the global optimization results
via supervised learning. The policy network could also be
extended to incorporate multi-modality as inputs, such as
images, tactile signals from various sensors. We leave it for
future work.

Lr(T ) =

T−1∑
t=0

lr(ssimt , asimt ; {x∗t }T−1t=0 , {u∗t }
T−1
t=0 , T ) (26)

s.t. ssimt+1 = Fsim(ssimt , asimt ) (27)

ssim0 = soinit (28)

asimt = π(ssimt ) (29)

Here we explain the loss function in Eqn 30

lr(ssimt , asimt ; {x∗t }T−1t=0 , {u∗t }
T−1
t=0 , T ) (30)

=

{
‖asimt ‖2 + ‖xt − x∗t ‖+ C + Ψt t < T − 1

‖xT−1 − G(T )‖2 + C + Ψt t = T − 1
(31)

where C the collision loss and Ψt is the contact loss. We
denote the corresponding sequences as {s∗t , a∗t }Tt=0. Note that
we could switch back to the object-centric setting if some
hard constraints are met, such as the robot reaching its joint
limit or is near to a potential collision. We gather the object
state in the above robot-centric as {x∗rt }Tt=0. These object
states are introduced to guide the object-centric optimization
process with the following modified loss function.

lot (xt, ut, T ) =

{
‖ut‖2 + C + ‖xt − x∗rt ‖ t < T − 1

‖xT−1 − G(T )‖2 + C t = T − 1

(32)

In the task of putting a cup into the microwave, we
have specified the goal pose that the cup is inside the
microwave. The initial pose of the cup is near the microwave
and is reachable by the robot. The microwave door has
already opened. There is enough space between the door
and the microwave so that the robot can put the cup inside.
However, there are multiple feasible trajectories to move
the cup from its initial pose to the goal pose. After the
first object-centric level, our pipeline infers the robot could
perform prehensile manipulation to grasp the cup and put
it inside the microwave. Leveraging the UniGrasp [16], we
have calculated the contact points on the cup. However, the
calculated trajectory in the object-centric level would return

a trajectory. At some time step, the object is outside of
the robot’s workspace during the robot-centric level. The
trajectory of the object’s poses in the robot-centric level is
leveraged in the next round object-centric level to guide the
optimization process to find a feasible trajectory for the robot
to execute.

b) Guided Manipulation in the Real world: After re-
ceiving the sequence of states {ssim∗t , asim∗t }Tt=0 and the
policy πθ, we would execute the learned policy πθ(s

t) and
the state will change to st+1. Meanwhile, we record the
transition tuple in the real world (srt , a

r
t , s

r
t+1). If the current

episode fails to accomplish the task T in the real world.
These states would be added into the memory buffer which
is used to improve the quality of the model as described in
Sec. III-C.

In real robot implementation, our policy network’s out-
put would be adapted according to the different control
paradigms of the real robot. Recent works have shown that
it’s promising to output forces in object pushing tasks to
identify object mass and friction coefficients leveraging the
differentiable simulation [19–21]. If the position control is
implemented in the real robot, we could change the output
of the policy network πθ. The policy network would output
the movement between this timestep and the next timestep
denoted as πθ(st) = qt+1 − qt in joint space or πθ(st) =
FK(qt+1) − FK(qt) in Cartesian space, where FK is
the forward kinematics. For the sim-real gap reduction in
Sec. III-C, since the action is the movement displacement,
we compare the difference between the next time step of
object state which is ‖xsimt+1−xt+1‖. Our pipeline minimizes
the difference of the object states in simulation (xsimt+1 ) and in
the real world (xt+1) after commanding the robot to move by
the same distance. However sometimes the robot moves to
different next states in simulation and in the real world due
to object contact, collision, etc. Our pipeline also minimizes
the differences between the robot next state in simulation
and in the real world, along with the object next states
minimization.

IV. EXPERIMENTS

In this work, we develop a learning framework aiming to
achieve sample-efficient, generalizable, compositional, and
incremental robot learning. Our experiments focus on evalu-
ating the following question: (1) how robust is our framework
to scene flow error? (2) how effective is our proposed interac-
tive perception framework? (3) whether our approach is more
sample-efficient and has better generalization compared to
other approaches? (4) How useful is our model in zero/few-
shot learning, task composition/combination, long-horizon
manipulations tasks?

A. Experimental Setup

a) Simulation: We use PyBullet [22] to simulate the
real world which is different from our differentiable sim-
ulation based on Nimble [13]. We conduct our experiments
using 6 object categories from the SAPIEN dataset [1], which
are box, door, microwave, oven, refrigerator, and storage



furniture. We select 176 models in total, 143 models for
training, and 33 models for testing.

b) Real World: We also set up the real world experi-
ment. We amount an RGB-D camera RealSense on the wrist
of the 7-Dof Franka robot.

B. Evaluating the Robustness

To better understand how scene flow affects the perfor-
mance of IP, we use three scene flow results with different
qualities. They are the predicted scene flow from our model,
noisy scene flow in which the random noise ranging from
0cm to 5cm is added to each point of our predicted scene
flow, and ground truth scene flow. We evaluate the IoU
of motion segmentation (mIoU), joint type classification
accuracy (Acc.), joint axis translation (Tran.) and rotation
(Rot.) error before and after one optimization step. The
results are shown in Tab. I. There are no significant dif-
ferences between the results under “sf+noise” column and
“sf” column, indicates interactive perception can effectively
improve the precision on several metric even when the scene
flow is relatively noisy. We also observe that if the ground-
truth scene flow is provided in the process, our pipeline could
achieve better performance. As an active agent, a robot might
directly put markers to collect ground-truth scene flow. We
leave how to gather such scene flow results as future works.

TABLE I: Robustness of interactive perception.

Init sf + noise sf sf GT

mIoU ↑ 0.574 0.757 0.791 0.975
Acc. ↑ 0.972 0.905 0.922 0.965
Rot. ↓ 12.414 8.910 7.703 5.502
Tran. ↓ 19.970 3.199 2.578 0.898

C. Evaluating the Performance of Interactive Perception

In this subsection, we compare the modeling qualities
before and after the interactive perception operations. Given
the initial modeling of the environment, we verify and
modify each part on the predicted URDF with a sequence
of interactions, and online optimize the URDF based on the
novel signal created by each interaction step. To evaluate
the performance, We compute the average precision under
IoU 0.75 of instance part segmentation (AP75), joint type
classification accuracy (Acc.), joint orientation error (Rot.),
and joint position error (Tran.). Comparing the results of
the ”init” and ”opt” in Tab. II, the pipeline can significantly
improve the URDF quality after interactive perception.

TABLE II: Performance of interactive perception.

AP75 ↑ Acc. ↑ Rot. ↓ Tran. ↓
init opt init opt init opt init opt

Door 0.748 0.714 0.975 0.975 13.713 2.252 15.806 3.670
Microwave 0.800 0.939 1.000 1.000 11.562 4.230 15.439 3.788

Box 0.895 0.822 0.877 0.907 10.143 4.530 15.241 7.899
Oven 0.773 0.875 1.000 1.000 23.525 6.589 18.731 10.066
Fridge 0.584 0.814 0.989 0.955 12.174 5.331 18.000 7.820
Storage 0.499 0.519 0.924 0.949 11.564 9.831 33.510 7.404
Overall 0.717 0.781 0.961 0.964 13.780 5.461 19.455 6.775

Initial Optimized Initial Optimized

Fig. 4: Qualitative Comparison between the initial URDF and the
optimized URDF. Different color indicates different part, and z-axis
(blue) indicates the joint axis.

We visualize the initial URDF and the optimized URDF in
Fig. 4. The segment and joint parameter have been improved
after interactive perception.

D. Evaluating the Sample-Efficiency and Generalization

We compare our proposed approach with two popular
model-free RL algorithms: SAC [23] and TD3 [24] on
articulation object manipulation tasks. The tasks are to teach
the robot to open the articulation objects of six classes. We
post the result of opening the microwaves and more results
on other categories.

(a) Learning curve (b) Generalization Ability

Fig. 5: (a) Learning curves of SAC and TD3. (b) Comparison of
SAC, TD3 and our method in terms of the generalization on the
microwave

(a) Learning curve (b) Generalization Ability

Fig. 6: (a) Learning curves of SAC and TD3. (b) Comparison of
SAC, TD3 and our method in terms of the generalization on the
oven



(a) Learning curve (b) Generalization Ability

Fig. 7: (a) Learning curves of SAC and TD3. (b) Comparison of
SAC, TD3 and our method in terms of the generalization on the
refrigerator

(a) Learning curve (b) Generalization Ability

Fig. 8: (a) Learning curves of SAC and TD3. (b) Comparison of
SAC, TD3 and our method in terms of the generalization on the
door

For the model-free RL approaches, the observation in the
microwave environment is 18 dimensions, including the han-
dle’s 6D pose, the microwave’s revolute joint value, the robot
end-effector’s 6D pose, the distance between the robot’s
two fingers, and the handle’s goal 3D position with the
corresponding joint state of the microwave. The action space
is seven dimensions, including the robot’s end-effector’s 6D
pose and the opening width between its two fingers. The
reward consists of three parts: 1) the first part is the negative
distance from the handle’s current 3D position to the target
3D position; 2) the second part is the negative distance from
the robot’s current revolute joint values to the corresponding
target values; 3) the third part is the negative distance
between the handle’s 3D position and the end-effector’s 3D
position. Every time the environment is initialized or reset,
the position and rotation of the microwave will be randomly
set within a certain range, and the robot’s gripper is also
set randomly within a certain region. Fig. 10(a) shows the
average success rate of the SAC and TD3 in the training
stage. After training 700k steps, the average success rate of
SAC models and TD3 models to open microwaves are about
80% and 70%, respectively. However, our pipeline achieves
a success rate of around 90% after five interactive perception
operations and training experiences/samples. Moreover, the
modeling constructed by our approach could be adopted for
other related tasks immediately.

To evaluate the generalization abilities of different ap-
proaches, we move the robot end-effector’s 6D pose and the
articulated object’s 6D pose by a 6D offset/disturbance. As

(a) Learning curve (b) Generalization Ability

Fig. 9: (a) Learning curves of SAC and TD3. (b) Comparison of
SAC, TD3 and our method in terms of the generalization on the
box

(a) Learning curve (b) Generalization Ability

Fig. 10: (a) Learning curves of SAC and TD3. (b) Comparison of
SAC, TD3 and our method in terms of the generalization on the
storage

shown in Fig. 10(b), with the increasing disturbance to the
robot end-effector’s initial 6D pose, the performance of SAC
and TD3 decreases rapidly, especially in manipulating unseen
microwaves. The results show that, overall, our method
performs comparably to the baseline methods on the small
disturbance and outperforms them on the large disturbance
by a large margin and on unseen microwaves, indicating a
significantly better generalization ability.

E. Evaluating the compositionality and incrementality

To evaluate the compositionality and incrementality, we
conduct two real-world experiments. The first one is to open
the microwave, put the mug into it, and close it. And the
second one is to open the drawer, take the tap out, and close
the drawer.

First, we need to scan the point cloud. We mount the
RealSense D415 RGB-D camera on the robot wrist, then
scan the point cloud from several different views. Since the
camera is calibrated, we can fuse different views directly
based on the camera pose, then utilize ICP to refine the point
clouds. Based on the scanning, we can generate the URDF
file, apply the model-based manipulation learning method
to generate manipulation policy, and verify and modify the
URDF via interactive perception. To put the mug in the
microwave and take the tap out from the drawer, we choose
Unigrasp [16] to generate a grasp pose. We adopted position
control in these real-world experiments.

The URDF file is initially estimated before opening the
microwave/drawer. The modeling is updated during the first
task of opening the microwave/drawer. Once the URDF is



well-estimated, it reduces the modeling efforts for other tasks
related to the same object(microwave/drawer), such as push-
ing the microwave/drawer, closing the microwave/drawer,
putting an object inside the microwave, or taking an object
outside the drawer. This allows the newly learned skills
to be easily integrated into the existing modeling of the
surrounding environment. Moreover, the newly learned skill
can continue to improve the modeling quality, which helps
contribute to the existing knowledge.

The simulation plays the role of “mental model” [25]
to endow robots with the ability of forward predicting
the action’s effects and the backward inverting ability. The
inverting ability allows robots to find a trajectory from the
initial states to the goal states, satisfying the objectives or
constraints. The model-based manipulation sequences are
produced in the “mental model”, making it easy to be
analyzed and combined with other manipulation sequences.

F. Evaluating the object-centric and robotic-centric model-
based approach

To evaluate the importance of our proposed model-based
manipulation learning approach, we design comparison ex-
periments. We remove the object-centric level. The whole
optimization process becomes the following equation

La(T ) =

T−1∑
t=0

l(ssimt , asimt ; T ) (33)

s.t. ssimt+1 = Fsim(ssimt , asimt ) (34)

ssim0 = soinit (35)

asimt = π(ssimt ) (36)

Here we explain the loss function in Eqn. 33

l(ssimt , asimt ; T ) (37)

= la(ssimt , asimt ; T ) (38)

=

{
‖asimt ‖2 + C + Ψt t < T − 1

‖xT−1 − G(T )‖2 + C + Ψt t = T − 1
(39)

Although the contact type and contact regions are inferred
from {x∗t , u∗t }T−1t=0 produced in the object-centric level, we
put the robot at the same initial pose configurations with
our proposed two-level (object-centric and robot-centric)
approach. We add the contact loss component denoted as
Ψt.

In addition to the above loss function, we also run another
comparison experiment where the contact loss component is
removed as shown in the following equation.

l(ssimt , asimt ; T ) (40)

= lb(ssimt , asimt ; T ) (41)

=

{
‖asimt ‖2 + C t < T − 1

‖xT−1 − G(T )‖2 + C t = T − 1
(42)

Using lb(ssimt , asimt ; T ) and lb(ssimt , asimt ; T ) as the loss
function, there are no success cases in the articulated object
manipulation tasks described in Sec.IV-D. The results in-
dicate that the contact-rich articulated object manipulation

tasks are complicated and our proposed two-level(object-
centric and robot-centric) model-based approach is effective.

V. NOTATION

We create a notation table shown in Table III summarizing
the symbols used in this work.

Symbol explanation
N the number of raw points
Pi
t the 3D position of the raw point cloud at time step t
Mi

t the part segmentation of the point cloud at time step t
K the number of parts
Gjt point clouds group
ζit centroid position
Bit part boundary
Sit confidence score
D the number of points whose Sit is one
L loss function
α physical properties
J joint relationship
C joint spatial description
E URDF tree structure
Z model patameter set
at action at time step t
F correspondence function
δq joint state change after at executed
T transformation matrix
C the collision penalty

TABLE III: Notation Table
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